

INITIATIVE 3A: CROWDSOURCING EVIDENCE

CONTENT

- Section I: Overview on Crowdsourcing Evidence of Impact Initiative
- Section 2: Overall approach
- Section 3: Summary of key findings
- Section 4: Call to action

OVERVIEW AND GOALS

High Level Description:

 Identify where the data exists and link to the people who need it, use case example set, or data repository which generates and demonstrates the need for promoting education of DCTs

Actions to deliver:

- Conduct secondary and primary research with key stakeholders across DCT ecosystem. The goal of the research would be to identify the experts with knowledge, awareness, and experience who are willing to participate.
- Crowdsourcing (here are the themes we are interested in, find ways to connect with the right people.
- Primary research could be conducted across a range of DCT SMEs to determine the need for education.
- The audience could include internal DTRA stakeholders or other SMEs such as key investigators/sponsors across varying geographic regions, patient advocacy groups, CROs, etc.
- Research could take the form of a standardized survey (online or mail), interviews (telephone or face-to-face), Questionnaires (online or mail), targeted focus groups, etc. (using examples from trials that went well), crowdsourcing

INITIATIVE TEAM MEMBERS

Team Member Name	Initiative Role	Company
Naveen Goje	Project Manager	ZS Associates
Caroline Redeker	Co-Leader	Advanced Clinical
Arnab Roy	Co-Leader	ZS Associates
Archana Sah	Core Team Member	Medable
Noah Goodson	Core Team Member	Thread
Laura Noble	Core Team Member	Greenphire
Mark Laney	Core Team Member	Merative
Lee Walke	Core Team Member	Elligo Direct
Mary Weinburg	Core Team Member	Care Access
Stephanie Tolbert	Core Team Member	CSL Behring
Madison Etchberger	Core Team Member	CSL Behring
Kelly Mehrer	Core Team Member	Medocity
Marc Fink	Core Team Member	Sema4
(Sean) Xiang Zhou	Core Team Member	Sema4
Blake Vosburgh	Core Team Member	SurveyVitals
John Wu	Core Team Member	BCG
Kris Sarajian	Priority Steering Committee	Clinone
Al O. Pacino II	Priority Steering Committee	BlueCloud

TIMELINE, WORKSTREAMS, AND KEY MILESTONES

	October 2021	November 2021	December 2021	 September 2022	November 2022
Key Milestones	Initiative Kick	DTRA Inaugural Annual Meeting			Final Readout DTRA Annual Meeting
Desk Research					
Internal Interviews (DTRA)					
External Interviews*					
Regulatory Validation (DTRA)					
/					
Synthesis & Presentation					

CROWDSOURCING EVIDENCE OF IMPACT: OVERALL APPROACH TO COLLECT EVIDENCE

METHODS UTILIZED TO CROWDSOURCE, ANALYZE, AND COMPILE EVIDENCE

Survey DTRA participants

Conducted survey to crowdsource evidence of impact and **received ~60 responses** from DTRA & industry participants

 Responses received from life sciences sponsors, CROs and technology vendors ~33 citable articles on DCT impact collated by:

Desk Research

- Crowdsourcing from DTRA Initiative 3A members
- Additional research and collaboration conducted by Boston University studies (with DTRA Oversight).
- Resulted in overlapping information.

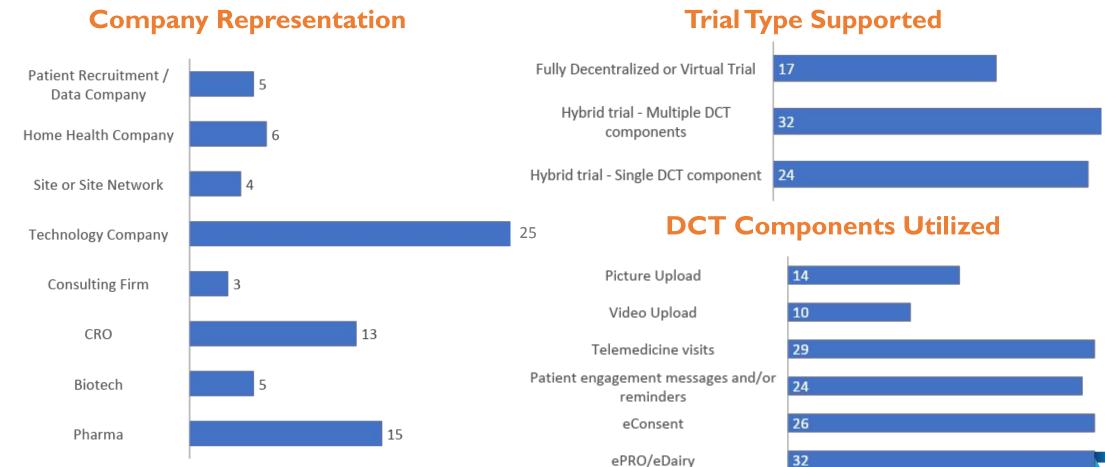
~8 interviews were conducted to gather detailed evidence of Impact

Additional Interviews

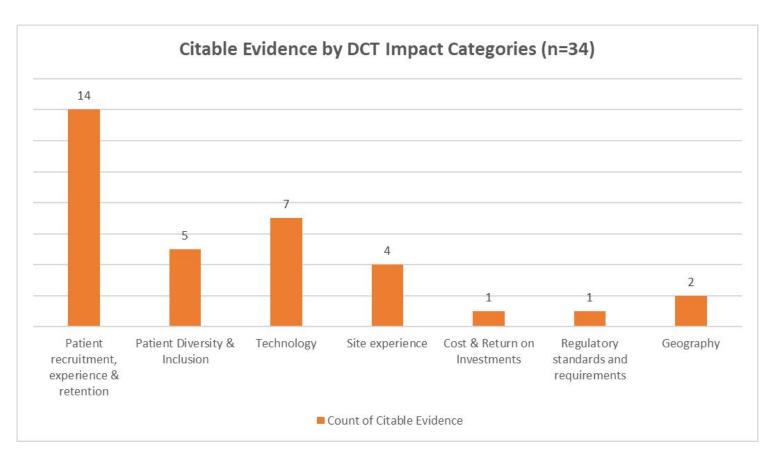
5 - 9)

 Interviewee roles ranged from strategy, operations and technology teams. Evidence Compilation & Synthesis

Initiative members helped synthesize DCT impact across 7 categories


Further validation and input received on the readout presentation from DTRA leadership and partner organizations (e.g. SCRS)

INPUT FROM PHARMA/BIOTECH, DEVICE, CROs, DCT PROVIDERS, MOBILE SITES


Initiative 3A Survey: Response Summary

N = Number of respondents

SYNTHESIS OF 34 CITABLE EVIDENCE INTO CATEGORIES OF DCT IMPACT

The **citable evidence** synthesized were sourced from a **range of scientific and peer-reviewed journals** such as:

- PubMed
- National Center for Biotechnology
 Information (NCBI)
- Journal of Scientific Innovation in Medicine
- Science Direct
- Research Gate
- Nature
- ... and others

DATA LIMITATIONS AND REGULATORY CONFUSION

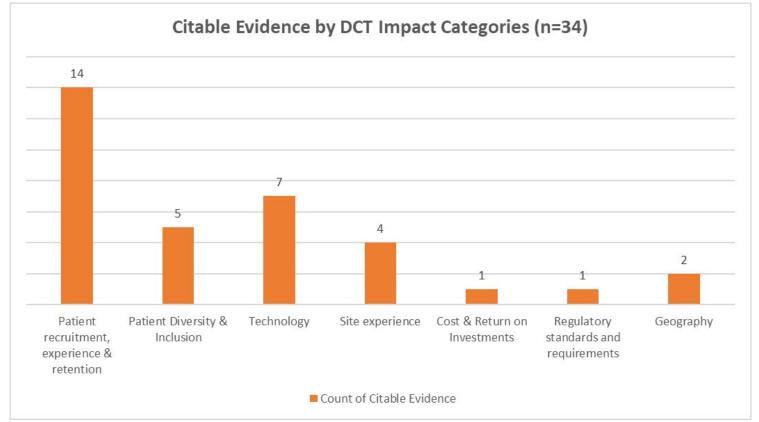
Acknowledgement of data limitations:

- Data sits with pharma companies or DCT providers primarily. There is no evidence from the sites' perspective in this data.
- Most of what has been collected is **operational data** and only some of it is published data. Claims of DCT are operational in nature and hence difficult to find published evidence of impact.
 - Even operational data is limited; companies do not have measurements in place to capture this level of detail within their studies
- There are regulatory barriers in operating DCT in certain countries, which is continuing to change
 - It is also unclear to many in the industry what will change coming out of COVID-19 era
 - What will be acceptable to regulatory authorities vs. what will revert by region and country
 - Site feedback includes confusion over their role in oversight when a patient is seen in the home or outside of the site with another provider

CROWDSOURCING EVIDENCE OF IMPACT: SUMMARY OF KEY FINDINGS

SOURCES AND CATEGORIZATION

Initiative 3A: Research Process


60 respondents surveyed across DTRA member companies including pharma, biotech, CROs, DCT technology companies and others

+35 publications reviewed by initiative members; collaborated with Boston University for validation and additional research

8 follow-up interviews with DTRA members to collect detailed evidence of DCT impact

Shows robust usage evidence on DCT methods; proof points for adding value to stakeholders still emerging

EXECUTIVE SUMMARY: 7 CATEGORIES FROM 34 CITABLE EVIDENCES

Despite limitations in tracking decentralized technologies & their impact, available sources suggest increasing adoption

Impact Category #	Impact Category	Summary	# of Citable Evidences
1	Patient Recruitment, Experience, & Retention	There have been many patient surveys with results indicating that patients prefer having the option of remote vs. in-person site visits (published and non-published data)	14
2	Patient Diversity & Inclusion	With fewer site visits and digitally-enabled recruitment, there are clear emerging proof points that DCTs support DEI objectives and broader patient access to and participation in clinical trials	5
3	Technology	In addition of traditional systems using in Clinical trials (for e.g., EDC), there is significant increase in use of newer technologies to support decentralized trials in the recent years. However, the evidence captured on impact from these technologies has been quite limited	7
4	Site Experience	Sites are increasingly supporting DCT methods but call out some key challenges on the road to adoption including technology integration and compensation	4
5	Cost & Return of Investment	Unfortunately, the "Cost & ROI" evidence link did not have meaningful information to report. In general, the ROI with DCTs have been poorly reported externally	1
6	Regulatory Standards and requirements	Not have enough meaningful context and quite narrow on scope. Refer to Initiative 4B (Collaborate on Regulatory gaps) for summary of regulatory findings around DCTs	1
7	Geography	General recognition into DCT benefits along with early investments being seen across APAC countries; Various European countries are at different stages in adoption and approval of DCTs	2

SUMMARY

What are our findings?

- Overall high evidence of <u>use</u> for DCTs globally (80% of our survey participants reported DCT usage)
 - Most in hybrid model, not fully decentralized
- Despite adoption of DCT research methods, proof points on early value to stakeholders is still emerging

DCT Impact Quotes

There is a sweet spot to hit with hybrid DCTs - it's about finding the right balance – *Rajesh Ghosh, Head of Digital Safety* and Decision support at Genentech

When we got hit by COVID, DCTs are what kept us going Shobha Dhadda, Global head of Clinical Operations, EISAI

- No forum in the industry available to collect evidence of DCT impact and disseminate systematically
- Many times, the evidence available is operational in nature, or evidence points are captured in a scattered manner from multiple stakeholders within the R&D organization, making it difficult to be reported
- There is a need for collaboration with other organizations, such as TransCelerate, CTTI, ACRP,
 - Many organizations working with sites, pharma, regulatory agencies = more effective together
- There is an opportunity to be the repository/provider of tracking tools for the industry

We suggest DTRA becoming a centralized hub to collect evidence of DCT impact

IMPACT CATEGORY I: PATIENT RECRUITMENT, EXPERIENCE, & RETENTION

There have been many patient surveys with results indicating that patients prefer having the option of remote vs. in-person site visits (published and non-published data)

Early sample evidence of DCT use & impact

Table 2. Overview of virtual clinical trials (VCT)

Sponsor	Year	Phase	VCT/hybrid	Detail	Enrolled
Duke University [19]	2016-2020 (estimated)	NA	VCT	Compare the effectiveness of two doses of aspirin to identify the optimal dose for sec- ondary prevention in patients with athero- sclerotic cardiovascular disease	15,000 (estimated)
Hoffmann-La Roche and Genentech [30]	2015-2019 (estimated)	Phase 3	Hybrid	Evaluate the efficacy and safety of rituximab compared with mycophenolate mofetil in participants with pemphigus vulgaris	135
Eli Lilly [20]	2017-2018	Phase 4	Hybrid	Estimate missed bolus insulin doses in dia- betics	79
AOBiome [25]	2017	Phase 2b	Hybrid	Topical probiotic spray for mild-to-moderate acne	372
PellePharm [26]	2016-2017	Phase 2	Hybrid	Topical patidegib for basal cell carcinomas (Gorlin syndrome)	36
Sanofi [17]	2014-2015	Phase 4	VCT	Remote system to diabetes management	60
Pfizer [15]	2011-2012	Phase 4	VCT	Efficacy and safety of tolterodine ER 4 mg in participants with overactive bladder	18

Source: Virtual Clinical Trials: Perspectives in Dermatology https://www.karger.com/Article/FullText/506418

Key Insights

- Lilly trial: 77% of patients indicated that this (remote) was better experience than when they did traditional trial model
- AOBiome: Reported that the online recruitment was relatively fast, dropout rates were lower than expected, compliance was better than expected, and the trial was cheaper to administer than a traditional trial

IMPACT CATEGORY 2: PATIENT DIVERSITY & INCLUSION

With fewer site visits and digitally-enabled recruitment, there are clear emerging proof points that DCTs support DEI objectives and broader patient access to and participation in clinical trials

Evidence of Diversity (JAMA):

Increased diversity in the remotely conducted Early Treatment Study vs a clinic-based trial

	Participants with COV				
	Remotely conducted	studies	Clinic-based study: Expanded Access to Convalescent Plasma for the Treatment of	P value for Early Treatment Study vs clinic-based study ^{b,c}	
Characteristic	Hydroxychloroquine COVID-19 PEP Study (N = 929) ¹¹	Early Treatment Study (N = 231) ¹⁰	Patients With COVID-19 study (N = 250) ¹²		
Age, mean (SD), y	39 (15)	39 (13)	50 (14)	<.001	
Sex (assigned at birth)					
Female	545 (58.7)	131 (56.7)	131 (52.4)		
Male	382 (41.1)	100 (43.3)	119 (47.6)	.36	
Other	2 (0.2)	0	0		
Racial identity, No./No. (%)					
Alaska Native or American Indian	18/913 (2.0)	39/228 (17.1)	1 (0.4)		
Asian	87/913 (9.5)	11/228 (4.8)	22 (8.8)		
Black or African American	88/913 (9.6)	26/228 (11.4)	4 (1.6)	<.001	
Native Hawaiian or Pacific Islander	6/913 (0.7)	3/228 (1.3)	1 (0.4)	<.001	
White	599/913 (65.6)	117/228 (51.3)	214 (85.6)		
Other ^d	115/913 (12.6)	32/228 (14.0)	8 (3.2)		
Hispanic or Latinx identifying, No./No. (%)	222/928 (23.9)	71/230 (30.9)	11/236 (4.7)	<.001	
Primary language					
English	852 (91.7)	210 (90.9)	250 (100)	<.001	
Spanish	77 (8.3)	21 (9.1)	0	<.001	
Community zip code					
Rural	4 (0.4)	1 (0.4)	2/248 (0.8)		
Small town	9 (1.0)	2 (0.9)	1/248 (0.4)	. 001	
Peri-urban	39 (4.2)	26 (11.3)	3/248 (1.2)	<.001	
Urban	877 (94.4)	202 (87.4)	242/248 (97.6)		

Evidence of Diversity (IBS Study - Curebase):

Study designed for patient choice of how they will participate: increased diversity within the Non-white population

Trial participants by race compared to FDA averages*

	FDA Trial Average	Brick and Mortar Site	Mixed Site	Virtual Site	Total
African American	9.0%	5.5%	29.5%	21.2%	27.5%
Asian	9.0%	-%	2.8%	24.2%	6.4%
Native American	-%	-%	1.5%	1.5%	1.5%
Non-white (Incl. Mixed Race)	28.0%	16.7%	39.0%	52.3%	40.7%
White	72.0%	83.3%	61.0%	47.7%	59.3%

* data from 761 participants who provided a response

IMPACT CATEGORY 3: TECHNOLOGY

Industry overall needs to be purposeful in measuring ROI from DCT technology investments

Sample evidence of DCT use & impact: Synthesis include 10+ articles

Key Insights

- **Telehealth** The majority of evidence suggests that telehealth is equal to or superior to in-person care in terms of quality and satisfaction of both participants and physicians in many contexts, but it may not be appropriate for all studies
- **eCOA** ePROs have all be successfully completed in numerous trial contexts for decade. Assessments involving clinicians, performance assessments, or outside observers have variable adoption to date
- Wearables / Sensors There is data validating use of wearables & sensors in a wide range of clinical contexts however there is lack of evidence of impact
- **eConsent** Electronic enabled consenting has significant positive evidence. However, due to implementation challenges at sites and regulatory barriers it remains incompletely leveraged globally

Summary & Call to Action

- In addition of traditional systems using in Clinical trials (for e.g., EDC), there is significant increase in use of newer technologies to support decentralized trials in the recent years. However, the evidence captured on impact from these technologies has been quite limited
- As evidenced on patient diversity, technology is helping trials be accessible to a wide variety of minor populations and has also led to increased participation in those trials
- Definition of technology impact in DCTs needs to be defined for better measurement

IMPACT CATEGORY 3: TECHNOLOGY

Sample evidence of DCT use & impact: Synthesis include 10+ articles

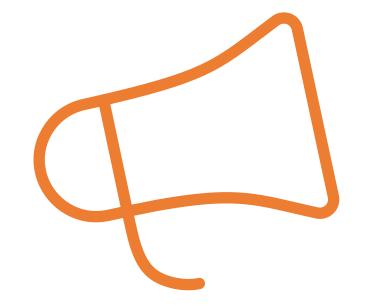
Telehealth The majority of evidence suggests that telehealth is equal to or superior to in-person care in terms of quality and satisfaction of both participants and physicians in many contexts, but it may not be appropriate for all studies

	Ξ
	<u> </u>
IV.	
Ľ	

Key Insights

eCOA ePROs have all be successfully completed in numerous trial contexts for decade. Assessments involving clinicians, performance assessments, or outside observers have variable adoption to date

Wearables / Sensors There is data validating use of wearables & sensors in a wide range of clinical contexts however there is lack of evidence of impact


eConsent Electronic enabled consenting has significant positive evidence. However, due to implementation challenges at sites and regulatory barriers it remains incompletely leveraged globally

https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/global-trends-in-r-and-d-2022/iqvia-institute-global-trends-in-randd-to-2021.pdf

IMPACT CATEGORY 3: TECHNOLOGY

Sample evidence of DCT use & impact: Synthesis include 10+ articles

Summary & Call to Action

- In addition of traditional systems using in Clinical trials (for e.g., EDC), there is significant increase in use of newer technologies to support decentralized trials in the recent years. However, the evidence captured on impact from these technologies has been quite limited
- As evidenced on patient diversity, technology is helping trials be accessible to a wide variety of minor populations and has also led to increased participation in those trials
- Definition of technology impact in DCTs needs to be defined for better measurement

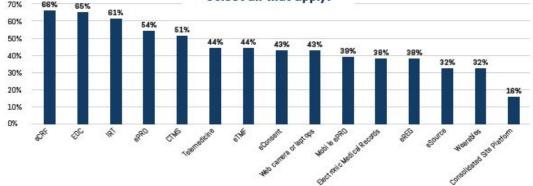
IMPACT CATEGORY 4: SITE PERSPECTIVES

Sites are increasingly supporting DCT methods but call out some key challenges on the road to adoption including technology integration and compensation

ACRP: Perspectives on Decentralized Trials (Oct 2022)

Summary:

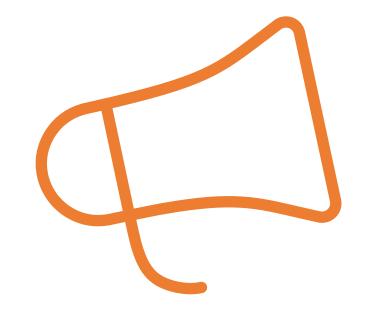
- Regulatory Requirements: No change in requirements but shift in "who" bears that burden. Call to regulators to redefine PI oversight and definition of a "site"
- Budgets: Do not compensate for activity changes required by the sites
- Managing third party vendors
- Change management for sites


<u>Overall agreement</u>: DCTs do not make the burden less or reduce costs for the sites. Addressing the above challenges will help achieve adaption and success

SCRS: Site Perspectives on Decentralized Trials

Sites generally are increasingly in support of decentralized methods but voice concerns along adoption of certain technologies

Which of the following technologies are you currently using, or have used, at your site? Select all that apply.


Figure 2. Please rank the following challenges your site has faced as it pertains to the adoption of DCTs from most challenging to least challenging.

IMPACT CATEGORY 5: COST & RETURN ON INVESTMENTS

In general, the ROI with DCTs have been poorly reported externally

The "Cost & ROI" evidence link did not have meaningful information to report.

Call to Action

Request sponsors to share more of the costs / ROI info

IMPACT CATEGORY 6: REGULATORY STANDARDS & REQUIREMENTS

Not enough meaningful context and quite narrow on scope.

Refer to Initiative 4B (Collaborate on Regulatory gaps) for summary of regulatory findings around DCTs

IMPACT CATEGORY 7: GEOGRAPHY

Sample evidence of DCT use & impact: Synthesis include 2 articles

Study I: APAC DCT Summary Report: Key Insights

- <u>Australia</u>: Pan-Australian initiatives have accelerated investments in improving capabilities to implement tele-trials & digital technologies
- <u>China</u>: DCTs are believed to be a primary model to address the large patient population and high unmet medical needs
- <u>South Korea</u>: Need for deregulation around DCTs but also better guidelines required to adopt remote trials
- <u>Taiwan</u>: DCTs regulations not in place, with mis-alignment within regulatory bodies; early indications from govt to use technology in digitization of healthcare

Total DCTs % Inc (2021 Country in 2021 vs. 2017) South Korea 120 111% Australia aiwar 172% China 79 39 50% South Korea

Australia

Taiwan

18

Study 2: Multi-country DCT study in Europe

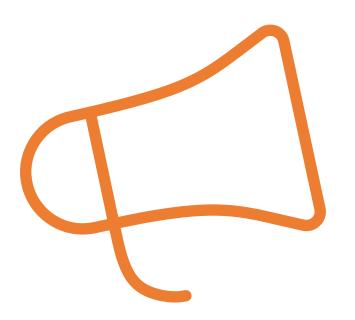
Multi-country DCT study in Europe

• The survey included 8 questions on decentralized elements in clinical trials and asked for relevant practice, guidelines, and applicable specific and common medical or national legislation. Participating countries: 16 countries responded (Austria, Czech Republic, Denmark, Estonia, Finland, Germany, Hungary, Ireland, Latvia, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, and Switzerland)

Key Insights

- 81.25% considered that a combination of home and on-site visits to be better than only on-site visits
- Most countries responded negatively to the application of a site-less model in clinical trials in their country
- Some countries pointed that at-home health is allowed under restricted conditions and in rare cases but cannot become common practice

General recognition into DCT benefits along with early investments being seen across APAC countries; Various European countries are at different stages in adoption and approval of DCTs


29%

Total DCTs by Country (5 years: 2017-2021)

CROWDSOURCING EVIDENCE OF IMPACT: CALL TO ACTION - NEXT STEPS

NEXT STEPS

Call to Action

We recommend an ongoing process to share DCT impact evidence in a standardized format.

DTRA accepts this recommendation and is working on an submission process & a library to share resources.

DTRA CONSIDERATION FOR FUTURE

5//	

Communicate with DTRA Members and Industry the need for standardization, measurement of effectiveness and ROI

Develop a tracking framework and offer it as a free way for people to track their metrics in a standardized manner that provides reports they can generate and provide to their management team

De-Identify the data but use on an aggregated basis to collectively track for the Industry across programs. Can be sorted by phase, DCT component, therapeutic indication, country, etc..

Win-win for clinical research teams and the Industry as a whole!

CROWDSOURCING EVIDENCE OF IMPACT: APPENDIX

REFERENCE DOCUMENTS

SI #	Impact category	Authors	Title	Year	Link
I	Patient Diversity & Inclusion	MFG Lucassen, SN Merry, S Hatcher	Rainbow SPARX:A novel approach to addressing depression in sexual minority youth	2015	https://www.sciencedirect.com/science/article/pii/S1077722914000 376
2		Brian M. Bot, Christine Suver, Elias Chaibub Neto, Michael Kellen I, Arno Klein, Christopher Bare, Megan Doerr, Abhishek Pratap, John Wilbanks, E. Ray Dorsey, Stephen H. Friend I & Andrew D. Trister	The mPower study, Parkinson disease mobile data collected using ResearchKit	2016	https://www.nature.com/articles/sdata201611
3	Patient recruitment, experience & retention	C Rodarte	Pharmaceutical perspective: how digital biomarkers and contextual data will enable therapeutic environments	2017	https://www.researchgate.net/publication/319293184_Pharmace utical Perspective How_Digital Biomarkers and Contextual_ Data_Will_Enable_Therapeutic_Environments
4	Site experience	IB Hirsch, J Martinez, ER Dorsey, G Finken	Incorporating site-less clinical trials into drug development: a framework for action	2017	https://www.sciencedirect.com/science/article/pii/S0149291817302 00X
5	Patient diversity & inclusion	Jones R, Lacroix LJ, Porcher E	Facebook Advertising to Recruit Young, Urban Women into an HIV Prevention Clinical Trial	2017	https://pubmed.ncbi.nlm.nih.gov/28528463/
6	Technology	A Schaefer	Clinical trials go virtual, big pharma dives in	2018	https://www.nature.com/articles/nbt0718-561
7	Patient recruitment, experience & retention	RE Gliklich, NA Dreyer	21st century patient registries	2018	https://pubmed.ncbi.nlm.nih.gov/29708678/
8	Technology	SJ Sirintrapun, AM Lopez	Telemedicine in cancer care	2018	https://ascopubs.org/doi/10.1200/EDBK_200141?url_ver=Z39.88-2 003𝔯_id=ori:rid:crossref.org𝔯_dat=cr_pub%20%200pubmed
9	Technology	E Reinertsen, GD Clifford	A review of physiological and behavioral monitoring with digital sensors for neuropsychiatric illnesses	2018	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995114/

REFERENCE DOCUMENTS

SI #	Impact category	Authors	Title	Year	Link
10	Technology	E Dolgin	Industry embraces virtual trial platforms	2018	https://www.nature.com/articles/nrd.2018.66
11	Patient recruitment, experience & retention	Noreen L Watson; Kristin E Mull; Jaimee L Heffner; Jennifer B McClure; Jonathan B Bricker	Participant Recruitment and Retention in Remote eHealth Intervention Trials: Methods and Lessons Learned From a Large Randomized Controlled Trial of Two Web-Based Smoking Interventions	2018	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128955/
12	Patient recruitment, experience & retention	Carsten Sommer, Diego Zuccolin, Valdo Arnera, Nicole Schmitz, Pernilla Adolfsson, Nicoletta Colombo, Raphaelle Gilg, Bryan McDowell	Building clinical trials around patients: Evaluation and comparison of decentralized and conventional site models in patients with low back pain	2018	https://www.sciencedirect.com/science/article/pii/S2451865 418300358
13	Patient diversity & inclusion	Abhishek Pratap, MS; Brenna N Renn, PhD; Joshua Volponi, BS; Sean D Mooney , PhD; Adam Gazzaley, MD, PhD; Patricia A Arean, PhD; Joaquin A Anguera, PhD	Using Mobile Apps to Assess and Treat Depression in Hispanic and Latino Populations: Fully Remote Randomized Clinical Trial	2018	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107735/
14	Site experience	Susie Donnelly, PhD; Brenda Reginatto, MSc; Oisin Kearns, MA; Marie McCarthy, MBA; Bill Byrom, PhD; Willie Muehlhausen, DVM; Brian Caulfield, PhD	The Burden of a Remote Trial in a Nursing Home Setting: Qualitative Study	2018	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030571/
15	Site experience	Alexander C Fanaroff, MD, Shuang Li, MS, Laura E Webb, Vincent Miller, Ann Marie Navar, MD, PhD, Eric D Peterson, MD, MPH, and Tracy Y Wang, MD, MHS, MSc	An observational study of the association of video- vs. textbased informed consent with multicenter trial enrollment: Lessons from the PALM Study	2018	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891825/
16	Technology	G Marquis-Gravel, MT Roe, MP Turakhia, W Boden	Technology-enabled clinical trials: transforming medical evidence generation	2019	https://www.ahajournals.org/doi/10.1161/CIRCULATIONAH A.119.040798?url_ver=Z39.88-2003𝔯_id=ori:rid:crossref. org𝔯_dat=cr_pub%20%200pubmed
17	Patient recruitment, experience & retention	MR Lunn, M Lubensky, C Hunt, A Flentje…	A digital health research platform for community engagement, recruitment, and retention of sexual and gender minority adults in a national longitudinal cohort studyThe PRIDE Study	2019	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696499/

REFERENCE DOCUMENTS

SI #	Impact category	Authors	Title	Year	Link
18	Patient recruitment, experience & retention	CW Laggis, VL Williams, X Yang, CL Kovarik	Research techniques made simple: Teledermatology in clinical trials	2019	https://www.sciencedirect.com/science/article/pii/S0022202 X19314903?via%3Dihub
19	Technology	BK Bracken, I Potoczny-Jones	Development of Human-Out-of-the-Loop Participant Recruitment, Data Collection, Data Handling, and Participant Management System	2020	https://journals.sagepub.com/doi/abs/10.1177/10711813206 41428?journalCode=proe
20	Patient recruitment, experience & retention	Z Ali, JR Zibert, SF Thomsen	Virtual clinical trials: Perspectives in dermatology	2020	https://www.karger.com/Article/FullText/506418
21	Cost & Return on Investments	SM Kircher, M Mulcahy, A Kalyan, CB Weldon	Telemedicine in oncology and reimbursement policy during COVID-19 and beyond	2020	https://jnccn.org/configurable/content/journals\$002fjnccn\$00 2faop\$002farticle-10.6004-jnccn.2020.7639\$002farticle-10. 6004-jnccn.2020.7639.xml?t:ac=journals%24002fjnccn%24 002faop%24002farticle-10.6004-jnccn.2020.7639%24002far ticle-10.6004-jnccn.2020.7639.xml
22	Patient recruitment, experience & retention	CG Tarolli, K Andrzejewski	Feasibility, Reliability, and Value of Remote Video-Based Trial Visits in Parkinson's Disease	2020	https://pubmed.ncbi.nlm.nih.gov/32894251/
23	Regulatory standards and requirements	M Apostolaros, D Babaian, A Corneli, A Forrest…	Legal, regulatory, and practical issues to consider when adopting decentralized clinical trials: recommendations from the clinical trials transformation initiative	2020	https://link.springer.com/article/10.1007/s43441-019-00006- 4
24	Patient recruitment, experience & retention	S. Walter, T.B. Clanton, O.G. Langford, M.S. Rafii, E.J. Shaffer, J.D. Grill, G.A. Jimenez-Maggiora, R.A. Sperling, J.L. Cummings, P.S. Aisen and the TRC-PAD Investigators	Recruitment into the Alzheimer Prevention Trials (APT) Webstudy for a Trial-Ready Cohort for Preclinical and Prodromal Alzheimer's Disease (TRC-PAD)	2020	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842199/
25	Patient recruitment, experience & retention	Abhishek Pratap, Elias Chaibub Neto, Phil Snyder, Carl Stepnowsky, Noémie Elhadad, Daniel Grant, Matthew H. Mohebbi, Sean Mooney, Christine Suver, John Wilbanks, Lara Mangravite, Patrick J. Heagerty, Pat Areán & Larsson Omberg	Indicators of retention in remote digital health studies: a cross-study evaluation of 100,000 participants	2020	https://www.nature.com/articles/s41746-020-0224-8

REFERENCE DOCUMENTS:

SI #	Impact category	Authors	Title	Year	Link
51 #	impact category			icai	
26	Patient recruitment, experience & retention	Heidi Moseson, Shefali Kumarm, Jessie L. Juusola	Comparison of study samples recruited with virtual versus traditional recruitment methods	2020	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327265/
27	Patient recruitment, experience & retention	Abhishek Pratap; Daniel Grant; Ashok Vegesna; Meghasyam Tummalacherla; Stanley Cohan; Chinmay Deshpande; Lara Mangravite; Larsson Omberg	Evaluating the Utility of Smartphone-Based Sensor Assessments in Persons With Multiple Sclerosis in the Real-World Using an App (elevateMS): Observational, Prospective Pilot Digital Health Study	2020	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655470/
28	Patient recruitment, experience & retention	JC Fowler, T Skubiak…	Feasibility of a Noninterventional Decentralized Clinical Trial Model in Adults with Major Depressive Disorder	2021	https://journalofscientificinnovationinmedicine.org/articles/10 .29024/jsim.84/
29	Patient recruitment, experience & retention	Thineskrishna Anbarasan, Amy Rogers, David A. Rorie, J. W. Kerr Grieve, Thomas M. MacDonald, Isla S. Mackenzie	Home blood pressure monitors owned by participants in a large decentralised clinical trial in hypertension: the Treatment In Morning versus Evening (TIME) study	2021	https://www.researchgate.net/publication/349337518_Home _blood_pressure_monitors_owned_by_participants_in_a_la rge_decentralised_clinical_trial_in_hypertension_the_Treat ment_In_Morning_versus_Evening_TIME_study
30	Patient Diversity & Inclusion	Erin D. Michos & Harriette G. C. Van Spall	Increasing representation and diversity in cardiovascular clinical trial populations	2021	https://www.nature.com/articles/s41569-021-00583-8
31	Patient Diversity & Inclusion	Noah Goodson, Paul Wicks, Jayne Morgan, Leen Hashem, Sinéad Callinan & John Reites Noah Goodson, Paul Wicks, Jayne Morgan, Leen Hashem, Sinéad Callinan & John Reites	Opportunities and counterintuitive challenges for decentralized clinical trials to broaden participant inclusion	2021	https://www.nature.com/articles/s41569-021-00583-8
32	Geography	Veska T. GERGOVA, Asena H. SERBEZOVA, Dobriana A. SIDJIMOVA	ANALYSIS ON DECENTRALIZED CLINICAL TRIALS IN SOME EUROPEAN COUNTRIES	2021	https://umbalk.org/wp-content/uploads/2021/12/01.ANALYSI S-ON-DECENTRALIZED-CLINICAL-TRIALS.pdf
33	Site experience	Stephen Sundquist, Gerald Batist,2 Kathy Brodeur-Robb,3 Kathryn Dyck,4 Bernhard J. Eigl,5 David K. Lee,6 Jaqueline Limoges,7 Holly Longstaff,8 Jim Pankovich,9 Anna Sadura,10 Patrick Sullivan,11 and Janet E. Dancey1,10	CRAFT—A Proposed Framework for Decentralized Clinical Trials Participation in Canada	2021	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534531/

